A SIMPLE AND EFFICIENT PREPARATION OF 2,2,6,6- TETRA -DEUTERIOCYCLOHEXANONE.

Received on May 23, 1973

The preparation of 2,2,6,6-tetradeuteriocyclohexanone is reported 1 using a 10 % DCI- D_3PO_4 exchange solution, generated from PCI₅ and D_2O_4 . Another procedure² uses a K_2CO_3 -D₂O exchange solution, which results in a significant amount of base-catalyzed aldol condensation. An alternate acidcatalyzed procedure for the preparation of 2,2,6,6-tetradeuteriocyclohexanone is reported here, utilizing a p-toluenesulfonic acid-d-DCI exchange solution, generated from p -toluenesulfonyl chloride (TsCI) and D_20 . TsCI is less hygroscopic than PCI₅, and can lead to an exchange medium of greater isotopic (deuterium) purity. Thus, 1 gram of cyclohexanone is treated twice for 24 hr periods with 1 gram of TsCI and 20 ml of $D_{2}0$ at reflux under an inert atmosphere. Short-path distillation of the concentrated pentane extract affords 2,2,6,6-tetradeuteriocyclohexanone, which shows 96%- d_A and 4% - d_3 by mass spectral analysis. Since TsCI does not hydrolize very quickly in water at 25° and p-toluenesulfonic acid is very water-soluble, the TsCI can be washed before use with $D_{2}O$. This will lead to an exchange medium of even greater isotopic purity. The use of TsCI to generate acid-catalyzed exchange solutions should prove to be generally useful because of its advantages over other reagents.

Norton P. Peet³ Department of Chemistry University of South Carolina Columbia, South Carolina 292.08 U. S. A.

REFERNCES

- Seibl J. and Gäumann T. --Helv. Chim. Acta., 46:2857 (1963).
- Streitwieser A., Jagow R.H., Fahey R.C., and Suzuki S.--J.<u>Amer.Chem.</u> Soc., 80:2326 (1958).
- Present address: Chemical Biology Research, 438 Bldg., Dow Chemical Co., Midland, Mich. 48640.